\mu - k - Connectedness in GTS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the possible volume of $mu$-$(v,k,t)$ trades

‎A $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $T_1$‎, ‎$T_2‎, ‎dots T_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $V$ the number of‎ ‎blocks containing this t-subset is the same in each $T_i (1leq‎ ‎i leq mu)$‎. ‎In other words any pair of collections ${T_i,T_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. In th...

متن کامل

On spanning trees and k-connectedness in infinite graphs

If two rays P,Q ⊂ G satisfy (i)–(iii), we call them end-equivalent in G. An end of G is an equivalence class under this relation, and E(G) denotes the set of ends of G. For example, the 2-way infinite ladder has two ends, the infinite grid Z×Z and every infinite complete graph have one end, and the dyadic tree has 20 ends. This paper is concerned with the relationship between the ends of a conn...

متن کامل

on the possible volume of $mu$-$(v,k,t)$ trades

‎a $mu$-way $(v,k,t)$ $trade$ of volume $m$ consists of $mu$‎ ‎disjoint collections $t_1$‎, ‎$t_2‎, ‎dots t_{mu}$‎, ‎each of $m$‎ ‎blocks‎, ‎such that for every $t$-subset of $v$-set $v$ the number of‎ ‎blocks containing this t-subset is the same in each $t_i (1leq‎ ‎i leq mu)$‎. ‎in other words any pair of collections ${t_i,t_j}$‎, ‎$1leq i< j leq mu‎$ is a $(v,k,t)$ trade of volume $m$. in th...

متن کامل

Sufficient degree conditions for k-edge-connectedness of a graph

One of Frank Boesch’s best known papers is ‘The strongest monotone degree conditions for n-connectedness of a graph’ [1]. In this paper, we give a simple sufficient degree condition for a graph to be k-edge-connected, and also give the strongest monotone condition for a graph to be 2-edge-connected.

متن کامل

Analysis of D+ -> K- pi(+)e(+)nu(e) and D+ -> K- pi(+)mu(+)nu(mu) semileptonic decays

R. A. Briere, H. Vogel, P. U. E. Onyisi, J. L. Rosner, J. P. Alexander, D. G. Cassel, S. Das, R. Ehrlich, L. Fields, L. Gibbons, S. W. Gray, D. L. Hartill, B. K. Heltsley, J. M. Hunt, D. L. Kreinick, V. E. Kuznetsov, J. Ledoux, J. R. Patterson, D. Peterson, D. Riley, A. Ryd, A. J. Sadoff, X. Shi, W. M. Sun, J. Yelton, P. Rubin, N. Lowrey, S. Mehrabyan, M. Selen, J. Wiss, M. Kornicer, R. E. Mitc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática

سال: 2014

ISSN: 2175-1188,0037-8712

DOI: 10.5269/bspm.v33i2.23419